Water Disinfection

Worldwide, 780 million people do not have access to sanitized water sources per the Center for Disease Control and Prevention. The outcome of this is approximately 800,000 children deaths under the age of 5 due to diarrheal disease and water infection. 41 million people suffer from active Trachoma, the leading preventable cause of blindness, 10 Million of those are irreversibly blinded per year from this easily preventable disease. The regions most affected by this issue, according to the World Health Organization and UNICEF, are Sub-Saharan Africa, Southern Asia, and Eastern Asia. There are worldwide efforts to improve these current conditions, and proves the need for continued advancement in the field.

Water disinfection is a vital part of everyday life, and continued advancement on effective, safe, easy to perform and less labor intensive methodology is vital. Nowadays electrochemical disinfection has gained increasing attention as an alternative for conventional drinking water treatment, because it is regarded as environmentally friendly, amenable to automation, inexpensive, easily operated and is known to inactivate a wide variety of microorganisms from bacteria to viruses and algae.

As compared with other chemical disinfection methods, the advantages of electrochemical water disinfection are obvious: no transport, storage, and dosage of disinfectants are required. The disinfecting effect can be adjusted according to the on-site demand. Electrochemical water disinfection shows a reservoir effect and is often more cost-effective and requires less maintenance than other disinfection methods. Photovoltaic power supply makes it possible to use electrochemical water disinfection far from the electrical supply grid. This may be important for its application to drinking water in developing countries. Electrochemical water disinfection can also be used in conjunction with other disinfection methods.

Various electrodes have been used in the EAOP process and the common feature is that high overpotential is necessary to facilitate electrochemical production. The need for a cost effective, long life anode has been one of the issues in this industry preventing large scale implementation. The Magneli Reactive Membrane can process large volumes of water effectively, has a long life, is energy efficient and allows for cost and performance advantages to allow wider use of electrochemical disinfection.

News & Publications